
IP SAN – From iSCSI to IP-addressable Ethernet Disks

Peter Wang Robert E. Gilligan Henry Green Jeff Raubitschek
Intransa, Inc. Intransa, Inc. Intransa, Inc. Intransa, Inc.

Peter.wang@intransa.com robert.Gilligan@intransa.com henry.green@intransa.com Jeff.raubitschek@intransa.com

Abstract

The initial iSCSI products provide a means to connect
FC SAN islands across IP networks. This paper
describes the implementation of an IP-SAN where the
disk subsystem is a virtual array of individually Ethernet
attached IP-addressable disks. By replacing the
conventional peripheral bus and loop interconnects with
a switched Gigabit Ethernet network, the virtual disk
array scales continually and dynamically with the simple
addition of Ethernet switches and disks, as well as
system-wide disk sparing and inherent high availability.
In fully exploiting the IP and Ethernet technologies and
user knowledge, this architecture pushes the IP SAN
evolution toward a truly scalable, manageable, yet
flexible and cost-effective data storage system that will
be a seamless part of the networked infrastructure.

1. Introduction

Much industry effort has gone into defining the
iSCSI standards [1] and developing associated products
[2]. The initial application of iSCSI products is in
bridging the IP and the Fibre Channel (FC) worlds. The
industry expects the long-term payoff to be a much
lower cost IP SAN that will fill the gaps left open by the
expensive and complex FC SAN implementations.

The full benefit of IP SAN [3-7] is well beyond the
projected low acquisition cost. In this paper, we discuss
an IP SAN architecture and implementation that exploits
the capabilities, trends and wide spread knowledge base
of IP and Ethernet networks to form the framework for
building intelligent IP SANs. These SANS will deliver
inherently scalable, distributed virtual storage services as
a native part of the IP infrastructure that can be managed
centrally.

By deconstructing the conventional peripheral bus
and loop interconnects based RAID subsystem structure,
this IP SAN architecture utilizes the standard gigabit
Ethernet (GbE) network as the interconnect fabric and
individually IP-addressable disks to achieve fully
virtualized storage arrays.

2. IP-SAN Top to Bottom

The first generation iSCSI storage arrays are
primarily existing FC RAID arrays with GbE interface
and iSCSI target support or a NAS subsystem with the
addition of an iSCSI target. We extend the basic IP
connectivity concept inside the storage subsystem to
create a SAN architecture that employs IP from the
application hosts to the storage array controller and then
to the IP-addressable disks.

2.1 Motivation

Putting disks directly onto the Ethernet network and
making them IP addressable yield a number of benefits.
The use of switched Ethernet breaks the limitation of
internal busses and loops of the conventional storage
arrays. One can extend and expand the switched
network easily and quickly while riding the
price/performance improvement trends of Ethernet.

All of the IP disks are reachable by the storage
controllers that are on the same IP network. As such, the
IP disks form a single storage pool and disk sparing
becomes network-wide and is not limited to a specific
RAID controller. Storage capacity can be expanded and
reconfigured by plugging additional IP disks into the
network without impacting the operation of the rest of
the virtual arrays. This offers the benefit of incremental
storage growth of the conventional modular storage
arrays without the associated high management
overhead.

Similarly, since the association between a storage
controller and the disks are formed logically and
dynamically over the network infrastructure, the number
of storage controllers can be expanded independently
based on the needs of the application server farm. Any
storage controller on the network can assume the
responsibility of another failed storage controller. Thus,
additional levels of fault tolerance and high availability
that have traditionally been the domain of high-end FC
storage subsystems are implicitly available now at a
much lower cost.

2.2 The IntraStorTM Architecture

The IntraStorTM architecture is a 3-tier architecture
comprising the application hosts, the storage controllers
and the IP disks (see Figure 1). The IP/Ethernet
networks that connect the storage controllers to the
application hosts and to the IP disks are logically
separate, but can be physically constructed as a single
infrastructure that’s partitioned into VLANs.

Figure 1 - 3-tier IntraStorTM Architecture

The application hosts access the storage controllers
using iSCSI, or other network file access protocols such
as NFS and CIFS. The storage controllers access and
manage the IP disks using a block oriented transport
protocol named xBlock. Each IP disk acquires its IP
address via DHCP. A device discovery capability is
provided.

The storage controllers form a loosely coupled
cluster. Each can perform the same functionalities and
thus can assume all or some of the responsibility of a
peer for fail-over or load-balancing. In addition, since
all of the storage controllers are IP servers, advanced
capabilities such as long distance mirroring and remote
replication can be achieved natively within the IP
network without specialized gateways and extenders.

2.3 Design Considerations

This architecture allows for the offloading of
storage functions to each disk node, and the distributed
processing of some RAID functions at each node. For
example, distributed RAID-5 functionality allows for
complete offload of parity calculations from the front-
end controllers. Dividing storage functionality allows
for abstraction of the physical storage medium, thereby

isolating the front-end controllers from specific protocol-
related details of the medium.

System flexibility is achieved by abstracting the
physical storage medium protocol from the IP storage
protocol. This allows the IntraStor™ system to use
parallel ATA, Serial ATA, SCSI, and other media
protocols without affecting the system architecture.

3. IP Disk Controller

The IP Disk Controller (i.e. IPDC) gives a storage
medium (disk) an IP presence by providing low latency
protocol conversion between a media-generic storage
protocol (xBlock) and a disk protocol such as ATA at
gigabit line speed. The primary IPDC design goal is to
strike a balance between providing a lightweight,
inexpensive protocol processor and a performance-
oriented processor that allows for the offload of both
storage and RAID functionality.

3.1 IPDC Architecture

The IPDC core architecture is divided into four
major functional blocks – the network interface, the disk
interface, the Packet Processor and Command Execution
Engine (see Figure 2).

Figure 2 – IPDC Architecture

The network interface provides a GMII MAC that
connects to an external PHY chip along with an interface
to an internal RAM controller. The network interface
allows for packet capture and queuing at line speed.

The disk interface is a direct one-to-one connection
to the disk, regardless of specific physical protocol.
Since there are no other devices on the connection, the
full bandwidth of the physical disk protocol is available.
In the case of ATA disks, there are no slave devices to
consume available bandwidth. Specific disk interface
features include Command Corruption Protection, which

ensures command integrity over the ATA interface (not
native to the parallel ATA interface protocol), and
Command Replay, which reduces command issue
overhead.

The Command Execution Engine (CEE) contains
the datapath and control logic for executing in-band data
commands as well as out-of-band configuration and
status-related commands. The CEE also contains a
parity function for offloading RAID parity calculations.
The Command Execution Engine has a sustained
throughput exceeding the peak throughput of current
disk technologies.

The Packet Processor (PP) serves as a front-end
command fetch unit to the CEE. The PP also handles
out-of-band IP packets such as ARP packets. The
Packet Processor scans the incoming packet queue for
supported protocols and schedules xBlock execution
within the CEE.

3.2 IPDC Implementation

While ATA disks can achieve a specified maximum
transfer rate (i.e. 100 MB/s) with occasional bursts,
average transfer rates are typically between 30MB/s and
35MB/s. It would be less than optimal to pair one disk
with a GbE link, since each GbE link supports transfer
rates of about 125MB/s (minus header overhead and
inter-frame delay).

To balance the disparity of transfer rates seen on
each side of its interface and help saturate the Ethernet
link, the IPDC design shares one GbE port per pair of
IPDC cores. Each core represents one instance of the
outlined IPDC architecture. The port not only services
two IP addresses, but also services two MAC addresses.
Received frames are issued to both cores, and each core
must arbitrate for use of the transmit channel.

The IPDC supports jumbo frames of up to 8 KB as
well as streaming operations, which include reading up
to a 127 KB stream from the disk in one xBlock
command.

4. The xBlock Protocol

xBlock is the protocol spoken between the storage
controller modules (SCMs) and IPDCs. The network
model envisioned consists of one or more SCMs
connected with multiple IPDCs over a switched gigabit
Ethernet network as shown in Figure 1. Each SCM may
have multiple links to the switch for fault tolerance and
to achieve greater throughput. The network is assumed
to be dedicated for exclusive use by the storage system,
which frees the protocol from the need to implement
authentication or confidentiality. In practice, this
assumption is easily satisfied by dedicating a switch or

VLAN. This assumption can be eliminated in the future
by incorporating IPsec support.

The largest constraint on the structure of the xBlock
protocol is that it must be able to be implemented in
hardware state machines (using FPGA or ASIC) on the
IPDC to achieve high throughput, low latency and
inexpensive chip implementations. This requirement
expresses itself in the simplicity of the xBlock protocol.

4.1 Protocol Design

Communication between the SCMs and IPDCs
strictly follows the client/server model. xBlock is a
simple datagram protocol layered directly above IP so
that it could be used in a routed IP network. In future
revisions, it could be cast as a UDP protocol. The SCM
is always the client (initiator) and the IPDCs always
operate as the server (target). The IPDCs are essentially
“stateless” with respect to the xBlock protocol: they
transmit only in response to requests sent by the SCM
and maintain no state information about requests once
they are completed.

xBlock provides the channel for both control and
data operations between the SCM and IPDCs. Data
operations consist of disk block read and write
commands, while control operations include getting and
setting control registers in the IPDCs, performing low-
level ATA commands to the drive, and identifying and
locating IPDCs on the network.

All requests consist of a single request packet, and
every request elicits exactly one response packet, except
for disk reads, which may generate multiple responses.
These response packets serve as the only
acknowledgement for the request; there is no separate
acknowledgement message in the protocol. Responses
are matched up with their corresponding request via a
32-bit sequence number, which is carried in both
packets. The SCM assigns sequence numbers to
requests in increasing order.

Disk read and write operations transfer data in
multiples of 1k bytes (two 512 byte sectors). Disk read
requests for more than 1k of data elicit multiple response
packets, each of which carries 1 KB of data. Disk write
requests may carry up to 8k of data in a single packet, in
units of 1k, with the larger sizes possible only if the
network supports “jumbo” Ethernet frames.

The protocol allows multiple requests to be
outstanding at a time. The xBlock target (i.e. IPDC)
services requests from a FIFO (first-in-first-out) queue,
synchronously processing one request at a time in the
order received. If the queue is full at the time a request
is received, it is dropped. The two types of operations –
control and data -- can be interspersed.

A simple credit-based flow control mechanism is
employed to ensure that the SCM does not send more

requests than the IPDC’s receive buffer can
accommodate, and that the IPDC does not over-run the
SCMs buffers with its responses. For every IPDC it is
communicating with, the SCM maintains two counters
representing the number of 1 KB buffers on the IPDC
that would be consumed by all outstanding requests, and
the number of response packets that would be elicited by
all outstanding requests. These values are updated
whenever a new request is sent or a response received.
When either of these counters goes above a pre-
configured value, the SCM refrains from sending.

A fixed timeout retransmission scheme is employed
to re-send requests that are lost or whose response is
lost. The SCM keeps a copy of every request that has
been sent. When the matching response is received, this
copy is deleted. When a retransmission timer fires, all
requests outstanding for longer than the retransmission
interval are retransmitted. Retransmissions continue at
this fixed interval until a response is received, or until a
retransmission abort interval is reached, at which point
the SCM stops retransmitting that request, indicates
failure to the initiator of that request, and signals the
problem to the management layer in the system.

Most xBlock operations are idempotent, i.e. if a
request is retransmitted because its response is lost, it
can be executed a second time by the IPDC without ill
affect. Special care must be taken to prevent the re-
ordering of disk and certain configuration register write
operations in the network, since such re-ordering may
have an unintended affect. For example, consider the
case where the SCM transmits two write requests to a
particular LBA, W1 and W2, to the IPDC in that order,
but W1 is lost and has to be retransmitted. If the
retransmission of W1 arrives at the IPDC after W2 is
processed, then the data from W1, rather than from W2,
will reside on the disk. These problems can be mostly
overcome if the SCM limits itself to having only one
write operation to a particular disk LBA or configuration
register in progress at a time. To guard against the
highly unlikely possibility that a copy of W1 might be
delayed in the network and delivered to the IPDC after it
has processed W2, the SCM sets a flag in the xBlock
header instructing the IPDC to drop the request if its
sequence number is less than the largest sequence
number recently received. The SCM sets this flag only
on write requests that require strict ordering.

5. Performance

IPDC core has been designed as a line-speed
protocol bridge with as little latency as possible.
Benchmarks have demonstrated that average throughput
seen at the IPDC host is very close to the average
throughput of the disk configured as a single master in a
high performance PC workstation.

Figure 3 and Figure 4 compare the IPDC write and
read throughput to that of a high performance PC
workstation. The PC workstation measurements were
taken on a 1.7 GHz Pentium® 4 system using IOmeter.
The same Maxtor Ultra-ATA/100 160GB disk was used
for all measurements for both IPDC and workstation
configurations.

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

Transfer Size (KB)

T
h

ro
u

g
h

p
u

t
M

B
/s

PC I/O Meter

DINO

Figure 3 – IPDC vs. PC Write Throughput

As seen from the Figure 3, IPDC’s write
performance is on par with disk capability and there are
several optimizations that can be made to close the gap.
Increasing the transfer size above 8KB does not appear
to buy additional performance.

10

15

20

25

30

35

40

1 10 100
Transfer Size (KB)

T
h

ro
u

g
h

p
u

t
M

B
/s

PC I/O Meter

DINO

Figure 4 – IPDC vs. PC Read Throughput

Figure 4 show that the IPDC read performance
exceeds that of the PC workstation. With streaming-
reads, the IPDC can push throughput to over 35.6 MB/s

(8KB transfer size). Much like the case with writes, the
throughput levels off at transfer sizes greater than 8 KB,
indicating that the disk is reaching its maximum
sustained sequential throughput for non-cached data.

Maximum performance was achieved using both
jumbo-write and streaming-read features of the IPDC
core. Packet overhead (less than 6% for xBlock) is not
as significant a throughput bottleneck as is ATA
command issuing. Therefore, it is advantageous to issue
as few possible commands to the disk, as is the case with
jumbo-writes and streaming-reads.

6. Discussions

The IPDC architecture with the xBlock protocol has
shown performance on par with a disk attached to a high
performance PC workstation. Given the conservative
design goals, there is room for improvement in the
current design.

Additional processing can be added to the IPDC to
optimize performance further with features such as out-
of-order execution of disk commands. A greater benefit
may be seen when combined with next-generation Serial
ATA features such as native command queuing. The
IPDC design greatly facilitates the migration to new
technologies such as Serial ATA by simply replacing the
disk interface block of the IPDC core.

Reads with 8 KB jumbo frames could be
implemented to reduce the protocol processing overhead
at the SCMs at the cost of slightly greater latency. In a
similar vein, streaming-writes could be added to achieve
jumbo-write performance where the network doesn’t
support jumbo frames end-end.

7. Conclusion

The measured access performance of the Ethernet-
attached disks showed minimal degradation compared to
direct host-attached disks. The switched topology of the
IntraStor™ architecture and the point-to-point
connectivity to each disk provided by the IPDC offers
linearly scalable throughput to the SCMs with all of the
advantages of an IP network. The IP addressability of
the Ethernet-attached disks enables a whole new
dimension of flexibility in constructing distributed,
networked storage. IP SANs that leverage such
distributed, networked storage with intelligent
management such as self-healing will go beyond the
simple iSCSI connectivity to achieve storage services as
an integral part of the network infrastructure.

Acknowledgement

The authors acknowledge the contributions by the
many hardware and software engineers at Intransa who
participated in the development of the technology and
product. Our special thanks go to Minh Pham, who
assisted with a number of the disk performance
measurements.

References

[1] J. Satran, K Meth, C. Sapuntzakis, M. Chadalapaka, E.
Zeidner, “iSCSI,” draft-ietf-ips-iscsi-18, Sept. 28, 2002
[2] P. Sarkar, K. Voruganti, “IP Storage: The Challenge
Ahead,” IBM Almaden Research Center Publication, 2002
[3] Gibson, G.A., R. Van Meter, "Network Attached Storage
Architecture," Communications of the ACM, Vol. 43, No 11,
Nov. 2000
[4] R. Van Meter, G. Finn, S. Hotz, “VISA: Netstations’s
Virtual Internet SCSI Adapter,” 8th International Conference
on Architectural Support for Programming Languages and
Operating Systems, Oct. 1998
[5] E. Riedel, C. Faloutsos, G.A. Gibson, D.F. Nagle, “Active
Disks for Large-Scale Data Processing,” IEEE Computer, June
2001
[6] G.A. Gibson, D.F. Nagle, W. Courtright II, et. al., “NASD
Scalable Storage Systems,” USENIX99, June 1999
[7] E.K. Lee, C.A. Thekkath, “Petal: Distributed Virtual
Disks,” Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 1996

