Building Cost Effective Remote Data Storage Capabilities for NASA’s EOSDIS

Stephen Marley

Mike Moore & Bruce Clark

8-Apr-2003

IEEE/NASA MSST2003
Agenda

- Overview of the EOS Mission
- Remote Data Store Program
- Modeling Petabyte Data Stores
EOSDIS Mission

Data Acquisition
- EOS Spacecraft
- Tracking and Data Relay Satellite
- White Sands Complex

Flight Operations, Data Capture, Initial Processing, Backup Archive
- EOS Polar Ground Stations
- EOS Flight Operations
- Flight Dynamics

Data Transport to Data Centers
- NASA Integrated Services Network (NISN) EBnet

Science Data Processing, Information Management, Data Archive, and Distribution
- NSIDC
- LaRC
- EDC
- GSFC
- SDPS
- DAAC Data Centers
- Instrument Science Team Facilities (SCFs and SIPS)
- Data Assimilation Model

Distribution, Access, Interoperability, Reuse
- Research Users
- Education Users
- Value-Added Providers
- International Partners and Centers
- Interagency Data Centers

Ancillary Data

Mission Data Systems
Mission Capacities
Agenda

- Overview of the EOS Mission
- Remote Data Store Program
- Modeling Petabyte Data Stores
Remote Data Store

Remote Data Store (RDS) Goal
“To provide automated, secure, seamless and efficient remote on-line redundant storage, recovery and access of operational EOS mission data products.”

NASA Goal
— Establish a partnership with industry to develop and evolve distributed scientific data services for a petabyte scale data set

Relationship to Existing EOS Data Services
— EOSDIS DAACs remain the primary data production; archive and distribution service provider for the EOS Missions
— RDS provides additional support to the EOSDIS mission
 1. RDS will provide an additional capability for the remote storage of part of a national data resource
 2. RDS will begin to research emerging data storage & access technologies for large distributed scientific data sets
 3. Provide additional data service capacity for data managed by the EOSDIS DAACs
RDS Concept

ECS – EOSDIS Core System
DPL – Data Pool extension to ECS
RDS – Remote Data Store

EMSNet

LP
DPL
ECS

GES
DPL

NSIDC
DPL
ECS

LaRC
DPL
ECS

RDS
Storage
Fairmont, WV

Public IP WAN
EMSNet

DAAC Traffic
RDS Traffic
RDS Expectations

- **Automated** – Operations are a key cost driver for long-term data archives. To the maximum extent practicable, the RDS needs to leverage storage management tools to minimize operational maintenance activities.

- **Secure** – This data is considered a National Data Asset, and as such needs to be secure from both physical and electronic attack whether intentional or otherwise.

- **Seamless** – This means storage location independent access.

- **Efficient** – Not all data will need to be accessible with the same level of service. Efficient access is defined as providing the most cost-effective level of service consistent with data use.

- **Remote** – Implying an IP WAN scale of distribution.

- **On-line** – As technology evolves, the definition of what on-line means can get blurred. For our purposes, we define on-line to imply access latencies not to exceed a few seconds, but potentially as fast as milliseconds.

- **Redundant Storage, Recovery & Access** – Moving beyond mere backup or mirroring. Redundant storage implies an intelligence to the data duplication that reflects varying levels of data criticality and access loads. This intelligence allows flexibility in the way the system can respond to individual storage, recovery and access requests.
Key Operational Goals for RDS

The RDS will provide two types of service in support of the EOSDIS Mission:

a. Data Integrity Services
 - The RDS will coordinate Remote Data Backup and Recovery Services as well as Redundant Shared Data Pool Data Storage across the EOSDIS Data Center Enterprise.

b. Data Access Services
 - The RDS will present a consolidated user view of the Data Center Enterprise holdings that are both unified and seamless:
 Unified – meaning that only a single reference for each product is presented to the end-user or application independent of the number of copies of the product that are stored in the enterprise for redundancy and load sharing purposes;
 Seamless – meaning that the physical location (both geographic and storage technology) of products is transparent to the end-user or application.
RDS Vision

Catalogue

Phase 1 User View

Phase 2 User View

Phase 2-4 Data Exchange

Phase 3-4 Information Exchange

Catalogue Interoperability

Data Grid-like Transport

Interoperable Data & Information Exchange Phase 3-4

RDS Transient Archive

GSFC DPL

User I/F

Phase 4 On-line Archive

Persistent Archive

Phase 1 Data Exchange

Phase 2-4

On-line Archive

Phase 3-4

User I/F
Key Research Goals for RDS

■ Vendor Independence
 — Science Data Archives are evolving from short-term “Mission” focused storage to long-term “Data Asset Management”
 — Single vendor “fixed” solutions become unviable because technology will evolve beyond any given storage technology or vendor solution
 — The RDS needs to be built on open industry standards that will permit the integration of new technology.
 — This will permit NASA to use the RDS solution as a research test-bed for new technologies. Examples for research include:
 1. Heterogeneous Storage over IP; Object-based Storage Devices (OSD) and Services

■ Enterprise Information Management
 — Volumes of data available for research are increasing.
 — Need to reference data in a way meaningful to the end user and not the storage system
 — The RDS needs to provide an environment which enables the implementation of Enterprise Information Management services on top of the storage services. Examples for research in this area include:
 1. Data Grid; Data Pool
When defining the solution architecture, the following key drivers need to be integrated together.

— **Persistent, secure physical storage:** Both long term and short term storage solutions must provide a high data integrity environment, that is tolerant of hardware and application software failure. In addition, although the data itself is not sensitive, it is part of a national data set and considered a national resource, and so needs to be securely stored and accessed.

— **Cost effective persistent storage:** The scale of the data being archived is tremendous. The total cost of ownership (TCO), therefore, becomes a critical issue. Not just the costs of physical disk, but also the server architecture and management environment are all important drivers.

— **Higher performance transient storage:** EOS data access patterns vary considerably as the data ages. Data is accessed by user and applications at a higher frequency within the first 30 days of acquisition. This was the one of the drivers for the generation of Data Pools at the DAACs.

— **Enterprise Data Management:** Although the individual DAACs define the contents of the Data Pools (i.e. what data is promoted from the ECS archive), the management of the data across the enterprise for data and service integrity needs to be managed through software at an enterprise level, and not just through inter-DAAC agreement or management mandate.

— **Enterprise Information Management:** Sitting above the Enterprise Data Management, this layer provides the domain or science context that justifies having the data available to a broader community. This layer presents the information space that the data represents to the end-user, in terms that the end user recognizes.
Candidate Architecture

Enterprise Information Management

Enterprise Data Management

Enterprise Storage Management

Transient Storage Mgmt

RAID Mgmt.

Persistent Storage Mgmt

RAID Mgmt.

RAID Mgmt.

RAID Mgmt.
Key Capabilities

<table>
<thead>
<tr>
<th>Layer</th>
<th>Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Information Mgmt</td>
<td>Application View; Storage Repository Abstraction; Thematic Abstraction; Knowledge Based Access; Data Authorship</td>
</tr>
<tr>
<td>Enterprise Data Mgmt</td>
<td>Homogeneous Storage View; Policy Mgmt</td>
</tr>
</tbody>
</table>

Enterprise Storage Management

<table>
<thead>
<tr>
<th>Persistent Storage Systems</th>
<th>Transient Storage Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>Layer</td>
</tr>
<tr>
<td>Object-based Storage Devices</td>
<td>SAN Management</td>
</tr>
<tr>
<td></td>
<td>FS</td>
</tr>
<tr>
<td>Layer</td>
<td>Layer</td>
</tr>
<tr>
<td>Object-based Storage Devices</td>
<td>Enterprise Device Mgmt</td>
</tr>
<tr>
<td></td>
<td>SAN Fabric Management</td>
</tr>
<tr>
<td>Layer</td>
<td>Capabilities</td>
</tr>
<tr>
<td>RAID Management</td>
<td>RAID Hardware</td>
</tr>
<tr>
<td></td>
<td>Capabilities</td>
</tr>
</tbody>
</table>

- RAID Management
 - Logical Volume Management
 - Duplexing; mirroring; flash store; Striping

- RAID Hardware
 - Storage
 - Buffering
During a multiphase development such as RDS it is critical for the long-term success of the program to adhere to appropriate standards throughout all phases.

Telecommunications
- By adhering to defined telecommunication and network standards in the early stages of implementation, RDS will be better positioned to evolve to inter-SAN communications technologies as they mature.

Storage Interconnectivity
- All storage technologies implemented under RDS will be expected to conform to current IEEE and SNIA standards, with a strategy that takes into account the evolving nature of existing (or draft) iSCSI, FCIP and iFCP storage interconnectivity standards as well as other standard initiatives as they emerge.

Storage Management
- RDS intends to leverage emergent initiatives like those supported by SNIA in support of its enterprise storage management goals (e.g. Bluefin)

Applications/GIS
- It is anticipated that data services based on FGDC metadata standards and OGC applications standards will be implemented on the Data Pools within the next 2 years. It is expected that RDS will utilize these services.
Technology/Standards Maturity

- The level of maturity of distributed, heterogeneous storage technology currently falls short of the ultimate needs for RDS.

- The need for RDS is immediate, and so the deployment of the RDS systems and functionality will use a phased approach that follows the on-going evolution and maturity of storage technologies that support or compliment the RDS mission.
Phasing Roadmap

<table>
<thead>
<tr>
<th>Layer</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterprise Information</td>
<td>No</td>
<td>Yes Preliminary Implementation</td>
<td>Yes Leverage Integrated Storage & Data</td>
<td>Yes Leverage shared file system & integrated</td>
</tr>
<tr>
<td>Management</td>
<td>Prototype solution</td>
<td></td>
<td>Management</td>
<td>DAAC Archives</td>
</tr>
<tr>
<td>Enterprise Data Management</td>
<td>No</td>
<td>Optional If cost and interoperability</td>
<td>Yes Integrate across RDS/DAAC Enterprise</td>
<td>Yes Integrate existing DAAC Archives</td>
</tr>
<tr>
<td></td>
<td>Prototype solution</td>
<td>technology plan permit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management by Operator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Procedure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transient Storage</td>
<td>Optional</td>
<td>Yes Prototype Interoperability</td>
<td>Yes Implement Interoperability</td>
<td>Yes Implement Shared File System</td>
</tr>
<tr>
<td></td>
<td>If cost and interoperability technology plan permit</td>
<td></td>
<td>Prototype shared File System</td>
<td></td>
</tr>
<tr>
<td>Persistent Storage</td>
<td>Yes</td>
<td>Yes Supplemental Capacity</td>
<td>Yes Supplemental Capacity</td>
<td>Yes Supplemental Capacity</td>
</tr>
<tr>
<td></td>
<td>Initial Archive Capacity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAID Management</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAID Hardware</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Next Steps

- RDS project will begin to test some of the underlying assumptions and conclusions of this paper.
- Initial SAN-based transient archive solution is in place.
- Grid-enabled Content Addressable Storage (CAS) based persistent archive prototype is currently being prepared for deployment.
- Will provide a significant test-bed capability against which to evaluate emerging storage and storage management solutions.
Agenda

- Overview of the EOS Mission
- Remote Data Store Program
- Modeling Petabyte Data Stores
The cost of RDS needs to take into account not only the cost of the acquisition but also the cost of operations and the cost of maintenance.

Total Cost of Ownership Approach

- Technology refresh is a way of life
- Take advantage of technology refresh
- Identify the real costs of operations into the future
Total Cost of Ownership

- **TCO Elements Include:**

 a. **Hardware:** includes racks, servers, disks, cabling, acquisition costs, and maintenance costs.

 b. **Software:** includes acquisition costs, maintenance costs, license management, upgrades, and monitoring.

 c. **Personnel:** includes operations staff, maintenance support staff, vendor staff, and consulting staff.

 d. **Availability:** includes component MTBF, system MTBF, and enterprise MTBF.

 e. **Performance:** includes time to first byte, total volumes served, and time to complete.

 f. **Facilities:** includes equipment floor space, power, cooling, and staff floor space.
TCO Contribution by Phase

<table>
<thead>
<tr>
<th>Contributing Element</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Phase 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>High</td>
<td>Neutral</td>
<td>Lower</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Initial Acquisitions</td>
<td>Improved Cost</td>
<td>Improved Cost</td>
<td>Improved Cost</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Performance of Storage Environment</td>
<td>Performance of Storage Environment</td>
<td>Performance of Storage Environment</td>
</tr>
<tr>
<td>Software</td>
<td>High</td>
<td>High</td>
<td>Lower</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Initial Acquisitions</td>
<td>Functionality Evolution</td>
<td>Functionality Enhancements</td>
<td>Functionality Complete</td>
</tr>
<tr>
<td>Personnel</td>
<td>High</td>
<td>Neutral</td>
<td>Neutral</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Establishing Operations</td>
<td>Improved cost performance of operations</td>
<td>Distributed data management costs incurred</td>
<td>Operations routine</td>
</tr>
<tr>
<td>Availability</td>
<td>Neutral</td>
<td>Lower</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Distributed Data Storage, Backup Only</td>
<td>Site Interoperability Established</td>
<td>Site Interoperability Routine</td>
<td>Site Interoperability Routine</td>
</tr>
<tr>
<td>Performance</td>
<td>Neutral</td>
<td>Lower</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Sites Unconnected</td>
<td>Site Interoperability Established</td>
<td>Network cost performance improvements</td>
<td>Network cost performance improvements</td>
</tr>
<tr>
<td>Facility</td>
<td>High</td>
<td>Neutral</td>
<td>Lower</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Establishing Operations</td>
<td>Improved cost performance as build-out costs depreciate & storage footprint improves</td>
<td>Improved cost performance as build-out costs depreciate, automation increases, & storage footprint improves</td>
<td>Improved cost performance as build-out costs depreciate, automation increases & storage footprint improves</td>
</tr>
</tbody>
</table>
Mission Model Description

Mission Modeling Variables – factors that affect the volume of data being generated at the Data Centers

- Mission Assumptions:
 1. Satellites: Terra; Aqua; Aura; ICEsat (significant volume products only)
 2. Products: L0 – L1A (archive only); L1B-L4 (Archive & Production)
 3. Volumes: Mission daily production baselines
 4. Duration: Design Life of Mission x 1.5
 5. Reprocessing: 7x production (retained for 6 months)
Predicted Data Volumes

Persistent Volume – Growth projected into the future.

Transient Volume – Capacity for Reprocessing
Capacity Ramp Up

RDS Total Storage – Notional plan to achieve 100% mid-2010

Communication Capacity – User access modeled at 1x production
Staffing Model

- **Staffing levels associated with hardware NOT volumes**
 - Assumes a significant improvement in the enterprise management of disk systems
 - Assumes a technology refresh rate that permits “genocidal sparing”

<table>
<thead>
<tr>
<th>Activity</th>
<th>Count</th>
<th>Shift Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk Rack Mgmt.</td>
<td>5 Racks/Staff</td>
<td>Yes</td>
</tr>
<tr>
<td>Tape Mgmt.</td>
<td>1 Staff</td>
<td>Yes</td>
</tr>
<tr>
<td>Communications Mgmt</td>
<td>1 Staff</td>
<td>No</td>
</tr>
<tr>
<td>Storage Policy Mgmt.</td>
<td>1 Staff</td>
<td>No</td>
</tr>
<tr>
<td>System/Install Engineer</td>
<td>1 Staff</td>
<td>No</td>
</tr>
<tr>
<td>Center Manager</td>
<td>1 Staff</td>
<td>No</td>
</tr>
<tr>
<td>System / Storage Administrators</td>
<td>2 Staff</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Modeling Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Longer-Term Archive</th>
<th>Short-Term Archive</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Near-Line On-line (SCSI)</td>
<td>On-line (SCSI)</td>
<td>Traditional static data architecture. Adequate support for “re-processing campaign” access, poor support for extensive random archive access applications.</td>
</tr>
<tr>
<td>2</td>
<td>Off-Line On-line (SCSI)</td>
<td>On-line (SCSI)</td>
<td>Used when the archive is accessed in large “campaign” sized chunks.</td>
</tr>
<tr>
<td>3</td>
<td>Near-Line 20% On-line (SCSI) 80% Near-Line</td>
<td>On-line (SCSI)</td>
<td>Same concept as Scenario 1, but for data access patterns that drop off even more steeply.</td>
</tr>
<tr>
<td>4</td>
<td>On-Line (SCSI)</td>
<td>On-line (SCSI)</td>
<td>The high performance solution for the fastest possible access at all times to all data.</td>
</tr>
<tr>
<td>5</td>
<td>On-Line (ATA)</td>
<td>On-Line (SCSI)</td>
<td>Compromise between Scenario 1 & Scenario 4. Provides higher performance than near-line solutions at a better cost performance than all SCSI.</td>
</tr>
</tbody>
</table>
Hardware Costs
Total Cost Performance
The results of taking a Total Cost of Ownership (TCO) approach to model large-scale (multi-petabyte) scientific data archives has led to the following conclusions:

- On-line storage staffing needs is the most critical cost factor in future data center TCO.
- Facilities costs are and will remain an insignificant cost consideration at 5-10% of the TCO.
- ATA vs. SCSI can offer considerable savings in the near-term for on-line storage, and will be competitive with near-line tape storage in the longer-term.
- In the longer-term, if staffing is manageable, the TCO for data storage will become relatively insensitive to the storage media choices.
The development of long-term data storage solutions for EOS data that supports the changing needs of the science communities is an on-going activity.

Constantly changing technology is a way of life, and should not hinder the start of this work.

RDS represents a solution path that provides both a practical solution path using today’s technology, and a platform from which to evolve solutions as technology changes.