A Novel Update Propagation Module for the Data Provenance Problem:

A Contemplating Vision on Realizing Data Provenance from Models to Storage

Abed E. Lawabni, C. Hong, David H.C. Du, & A. H. Tewfik Digital Technology Center, Intelligent Storage Consortium (DISC) University of Minnesota

MSST 2005

April 12th, 2005

Outline

- □ Introduction & Motivation
- Automated Propagation Module
 - □ Sensitivity
 - □ Uncertainty
 - Complexity
- □ Compatibility with OSD technology
- Conclusions

Introduction & Motivation

Data Provenance

- Data provenance: is the description of the origins of a piece of data and the process by which it was generated
- The transition from laboratory science to *in silico* e-science (*computer-simulated experiments*) has facilitated a paradigmatic shift in the way we conduct modern science (e.g., bioinformatics, high-energy physics, etc.)
 - Experiments are designed as workflows containing processors and data links
 - Enactment of workflow is fully automated

Storage and Provenance

- Scalable storage systems can safely store and keep the data accessible for long time
 - In businesses, there are government or company regulations on how long certain data should be stored and be able to retrieved when requested
 - In scientific research, findings are build on past results and conclusions
- Unfortunately, little information on *where* and *how* a piece of data was derived, i.e., *provenance information*
- Lacking of provenance information undermines the usefulness of data:
 - Users doubt the *quality* and *reliability* of data

Limitations of Database-based Solution

- Existing approaches store all provenance records in a *central relational database* within the provenance server
 - One obvious limitation of this *centralized* solution is scalability. As more and more provenance information is recorded into the relational database, the overheads of performing access, queries and managements increase accordingly
 - When there are a lot of concurrent submissions of provenance records from concurrent clients, the provenance server becomes a bottleneck due to its limited processing power and buffer space
 - Data provenance relationship has to be in a pre-determined fixed format (database schema)
 - This may not be flexible enough for supporting multiple types of data objects and variable forms of data provenance relationships

Propagation Module

Data Provenance Model

- Direct derivations: onestep processing of data
- Workflow: a chain of direct derivations connected by using one's output as another one's input
 - *Functional process*: processing tools ranging from self-contained scripts/binaries to remote services

Data: permanently stored data not including temporary results within a functional process

What if?

Data repeatedly copied/corrected/ transformed through numerous heterogeneous genomic database

- □ What if an update of a single input gives a full impact on some of the drawn conclusions?
- □ What if there is an error in one of the inputs or parameters?
- □ What if it takes tremendous computation time to re-run the whole experiment?

Objective & Approach

Objective: Automated propagation of changes, while

- Preserving all data as different versions
 - Preventing the following scenarios:
 - Propagation of erroneous outcomes
 - □ Unnecessary rerunning of time consuming and heavily computations

Approach: Integrating three major decision factors as a sequential hypothesis testing problem to form a unique decision module

- Sensitivity analysis (*Variance-based Approach*)
 - Uncertainty analysis (Root-Sum-of the Squares Method)
 - Complexity

Basic Assumptions

output

Source data are *mapped* to *numerical values*Inputs can be correlated or independent

Sensitivity Analysis (SA)

□ SA quantifies the effect of changing one or more input parameters on the output variability

□ Two scenarios of interest:

- Changes to source data (indep. & correlated inputs)
- Minor mutation to the functional process

First Scenario: (Independent Inputs)

SA: Which input mostly contributes to the output variability? Model: $Y = f(X_1, \dots, X_p)$

Sensitivity indices are defined by:

$$S_{i} = \frac{V(E[Y|X_{i}])}{V(Y)}$$

$$\sum_{i=1}^{p} (S_i) = 1$$
 [Sobol 1993]

First Scenario: (Correlated Inputs)

Consider the following Model: $Y = f(X_1, \dots, X_p)$ Where

$$(X_{1}, \dots, X_{p}) = (\underbrace{X_{1}}_{x_{1}}, \dots, \underbrace{X_{i}}_{x_{i}}, \underbrace{X_{i+1}, \dots, X_{i+k_{1}}}_{x_{i+1}}, \underbrace{X_{i+k_{1}+1}, \dots, X_{i+k_{2}}}_{x_{i+2}}, \underbrace{X_{i+k_{l-1}+1}, \dots, X_{p}}_{x_{i+l}})$$

$$(X_1, \dots, X_i) = (x_1, \dots, x_i)$$
 are indep. inputs
 $(x_{i+1}, \dots, x_{i+l})$ are correlated inputs

Sensitivity

$$S_{j} = \frac{V(E[Y|x_{j}])}{V(Y)} \quad \forall j \in [1, i+l]$$

First Scenario: Correlated Inputs (continue)

If $j \in [1, ..., i]$, we have well define the same sensitivity indice:

$$S_{j} = \frac{V(E[Y|X_{j}])}{V(Y)} = \frac{V(E[Y|X_{j}])}{V(Y)}$$

And if $j \in [i+1, \dots, i+l]$ for example j = i+2:

$$S_{j} = S_{\{i+k_{1}+1,\ldots,i+k_{2}\}} = \frac{V(E[Y|X_{i+k_{1}+1},\ldots,X_{i+k_{2}}])}{V(Y)}$$

Second Scenario: Impact of Minor Mutation of the Model

Model
$$M: Y = f_1(X_1) + f_2(X_2, ..., X_p)$$

New Model
$$M_{new}: Y^m = f_1(\mu_1) + f_2(X_2, ..., X_p)$$

where
$$\mu_1 = E[X_1]$$

The new model sensitivity can be expresses by:

$$S^{m} = S \times \frac{V(Y)}{V(Y^{m})}$$

Sensitivity of M

Second Scenario:

Impact of Another Type of Mutation of the Model

Two analysis have been made on two models:

 $M_1: Y_1 = f_1(X_1, \dots, X_p) \longleftrightarrow S^1$

 $M_2: Y_2 = f_2(X_{p+1}, \dots, X_{p+q}) \longleftrightarrow S^2$

 $M^{new}: Y^m = Y_1 + Y_2$

 $S^{m} = S^{1} \times \frac{V(Y_{1})}{V(Y_{1}) + V(Y_{2})}$ $V(Y_2)$ + $S^2 \times -- V(Y_1) + V(Y_2)$

Consider the following Model: $Y = f(X_1, \dots, X_p)$ Suppose that each input X_i is associated with u_i uncertainty, then

$$u_{Y,i} = \left| \frac{\partial f}{\partial X_i} \right| u_i , (1 < i < p)$$

Sensitivity × uncertainty

Uncertainty Analysis (Combining Uncertainties Due to Different Sources)

Root-Sum-of the Squares (RSS) Method:

Model $Y = f(X_1, ..., X_p)$

□ The combined uncertainty of the **same** quantity (due to many different sources of uncertainties), say Y is given by:

$$u_{Y,combined} = \sqrt{\sum_{i=1}^{p} (u_{Y,i})^2} = \sqrt{\sum_{i=1}^{p} \left(\left| \frac{\partial f}{\partial X_i} \right| u_i \right)^2}$$

Complexity

- Complexity denotes how long it will take to complete running a whole process. We will denote it by T
- Intuitively a process with a high complexity should be more concerned with the other mentioned factors

All Together

- □ Once we obtain relevancy or sensitivity to changed/updated data and the degree of trust to associate with it, we pose the update problem as a *sequential hypothesis testing problem*
- We assign the weighting factor corresponding to each decision factor
- □ Given a threshold obtained *empirically*, we evaluate if testing value from an update exceed this threshold

Why OSD Technology?

Why Object-based Storage Technologies for

Data Provenance?

- Unique object ID (GUID)
 - Objects can be moved around w/o changing ID
- Extended attributes
 - Recording data object relationships and provenance information
- □ Highly-scalable distributed architecture
 - Compared to centralized solutions based on relational database or semantic web technologies
- □ flexibility :
 - No need to pre-determined fixed format (database schema)
 - Supporting multiple types of data object and variable forms of data provenance relationships

Versioning

Functional process versioning

New processing tool perform the same function can be released. This requires explicit operation to set a newly-release processing tool as a new version of an older one

Workflow versioning

- A new version of one of its functional processes
- Changes to parameters of its functional processes
- Changes to the input data
- Manually assigned by people. This requires workflow inputs and outputs have the same types

Versioning

□ Data versioning:

- Source data (from laboratory experiments) are manually assigned versions when new data is generated and stored
- Derived data have new versions when new version of FP or new version of source data causes automatic propagation of changes

OSD-based Provenance System Architecture

Provenance Objects

- Storage objects consists of data part and attribute part
- Data part is stored in OSTs

Workflow Object

:

Extended

Attributes

Workflow

definition

language

document

Storage Object

Data

- Attribute part can be stored on either MDS of OSTs
- Provenance EA are stored in OSTs to take advantage of *active OSD feature*

Process Objects

Source Data Objects

Derived Data Objects

Previous Version

Next Version

Conclusions

- Automated propagation of changes caused by changed source data or changed processing tools
- □ All data are preserved as different versions
- □ A novel solution of data provenance using emerging object-based storage technology
- Highly-scalable distributed architecture compared to previous centralized solutions